Number of found documents: 1834
Published from to

Comparison of finite element simulation of tungsten nanoindentation with Berkovich and conical indenter
Fiala, L.; Ballo, I.; Kovář, J.; Fuis, Vladimír
2023 - English
Finite Element Method (FEM) was used to study the difference between using Berkovich and conical indenters in nanoindentation test of tungsten specimen. The study was aimed to determine the\nmodulus of elasticity of a tested specimen and how it changes with different indenter. The FEM analysis also revealed that the modulus of elasticity was sensitive to the dimensions of both specimen and the indenter for which were made several numerical calculations with different dimensions. Keywords: nanoindentation; FEM; Berkovich indenter; conical indenter; tungsten Available at various institutes of the ASCR
Comparison of finite element simulation of tungsten nanoindentation with Berkovich and conical indenter

Finite Element Method (FEM) was used to study the difference between using Berkovich and conical indenters in nanoindentation test of tungsten specimen. The study was aimed to determine the\nmodulus ...

Fiala, L.; Ballo, I.; Kovář, J.; Fuis, Vladimír
Ústav termomechaniky, 2023

Optical and Pneumatic Measurements on TR-U-11 Cascade
Luxa, Martin; Hála, Jindřich; Šimurda, David
2023 - English
The report contains results and evaluation of conducted optical (interferometry and schlieren technique) and pneumatic measurements on the first variant of the new tip section, intended for turbine rotor blade. Keywords: transonic flow; rotor turbine blade; tip section Available at various institutes of the ASCR
Optical and Pneumatic Measurements on TR-U-11 Cascade

The report contains results and evaluation of conducted optical (interferometry and schlieren technique) and pneumatic measurements on the first variant of the new tip section, intended for turbine ...

Luxa, Martin; Hála, Jindřich; Šimurda, David
Ústav termomechaniky, 2023

Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids
Studeník, Ondřej; Kotouč Šourek, M.; Isoz, Martin
2023 - English
The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An established approach providing such models is based using a variant of an immersed boundary method to couple the computational fluid dynamics (CFD) and discrete element method (DEM). In the talk, we will present our custom and monolithic implementation of a fully-resolved CFDDEM solver and concentrate on the intricacies of solving contact between two arbitrarily-shaped solids. We shall propose an efficient contact treatment based on the concept of a virtual mesh, which provides the mesh resolution required by DEM through dividing the space around the contact point in a finite volume fashion without any changes to the CFD mesh itself. A substantial part of the talk will devoted to the parallelization of the contact solution, especially in the context of the domain decomposition method imposed by the CFD solver. Keywords: CFD; DEM; virtual mesh Fulltext is available at external website.
Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids

The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An ...

Studeník, Ondřej; Kotouč Šourek, M.; Isoz, Martin
Ústav termomechaniky, 2023

A new blade cascade for flutter studies
Šnábl, Pavel; Pešek, Luděk; Procházka, Pavel P.; Skála, V.
2023 - English
In this paper, a new blade cascade, developed in the Institute of Thermomechanics, is presented. The geometry of the cascade was modified so now the stall flutter can occur. It has some major construction improvements over the original cascade which now allow more precise and reliable measurements. The stability of the new blade cascade with five NACA 0010 profiles with rotational degree of freedom is assessed by Travelling Wave Mode approach and Aerodynamic Influence Coefficient approach. Keywords: blade cascade; stability; travelling wave mode; aerodynamic influence coefficient Available at various institutes of the ASCR
A new blade cascade for flutter studies

In this paper, a new blade cascade, developed in the Institute of Thermomechanics, is presented. The geometry of the cascade was modified so now the stall flutter can occur. It has some major ...

Šnábl, Pavel; Pešek, Luděk; Procházka, Pavel P.; Skála, V.
Ústav termomechaniky, 2023

Thermal and creep analysis of VVER-1000 reactor pressure vessel at high temperatures caused by fuel melting during severe accident
Gabriel, Dušan; Gál, P.; Kotouč, M.; Dymáček, Petr; Masák, Jan; Kopačka, Ján
2023 - English
Thermal and creep analysis of the VVER-1000 reactor pressure vessel (RPV) was performed at high temperatures caused by fuel melting during severe accident. First, the integral code ASTEC was applied simulating severe accident evolution since an initiating event up to a hypothetical radioactive release into the environment. The ASTEC outputs including the remaining RPV wall thickness, the heat flux achieved and the temperature profile in the ablated vessel wall served as boundary conditions for the consequent assessment of RPV integrity carried out with the aid of finite element method (FEM). The FEM analysis was performed including the creep behaviour of RPV material using a complex creep probabilistic exponential model with damage. The objective of the analysis was to computationally assess emergency condition and, on this basis, to propose a general methodology for evaluating the integrity of RPV at high temperatures due to fuel melting during severe accident. Keywords: integrity of reactor pressure vessel; severe accident; ASTEC; creep; FEM Fulltext is available at external website.
Thermal and creep analysis of VVER-1000 reactor pressure vessel at high temperatures caused by fuel melting during severe accident

Thermal and creep analysis of the VVER-1000 reactor pressure vessel (RPV) was performed at high temperatures caused by fuel melting during severe accident. First, the integral code ASTEC was applied ...

Gabriel, Dušan; Gál, P.; Kotouč, M.; Dymáček, Petr; Masák, Jan; Kopačka, Ján
Ústav termomechaniky, 2023

Reduced modelling of aeroelastic instability in a turbine blade cascade
Pešek, Luděk; Šnábl, Pavel; Prasad, Chandra Shekhar
2023 - English
The contribution deals with the first results on flutter instability of the linear cascade triggered by impulse excitation. Together with experimental results, numerical results obtained by reduced modelling of the cascade using van der Pol model of self-excitation are presented and discussed. Keywords: flutter; blade cascade; self-excitation; Van der Pol Available at various institutes of the ASCR
Reduced modelling of aeroelastic instability in a turbine blade cascade

The contribution deals with the first results on flutter instability of the linear cascade triggered by impulse excitation. Together with experimental results, numerical results obtained by reduced ...

Pešek, Luděk; Šnábl, Pavel; Prasad, Chandra Shekhar
Ústav termomechaniky, 2023

Simulation of heterogeneously-catalyzed non-isothermal reactive flow in industrial packed beds
Hlavatý, Tomáš; Isoz, Martin; Khýr, M.
2023 - English
Packed bed reactors are the most frequently used devices to perform heterogeneously catalyzed reactions on industrial scales. An industrial real-life heterogeneous catalysis is complex process that combines fully three-dimensional mass, momentum and energy transport on several scales. In the present work, we leverage our previously developed CFD solver for non-isothermal heterogeneously catalyzed reactive flow based on the finite volume method and couple it with our\nin-house DEM-based method for preparation of random packed beds. The resulting framework is verified in the simplified cases against available analytical solutions and correlations and is used to study an industrially-relevant case of ethylene oxychlorination performed in a tubular packed bed comprising CuCl2-coated catalyst carrying particles. In particular, we compare properties of three different industrially used catalyst carrying particles: Raschig rings, Reformax, and Wagon wheels Keywords: CFD; OpenFOAM; non-isothermal flow Available in a digital repository NRGL
Simulation of heterogeneously-catalyzed non-isothermal reactive flow in industrial packed beds

Packed bed reactors are the most frequently used devices to perform heterogeneously catalyzed reactions on industrial scales. An industrial real-life heterogeneous catalysis is complex process that ...

Hlavatý, Tomáš; Isoz, Martin; Khýr, M.
Ústav termomechaniky, 2023

Numerical implementation of incremental minimization principle for materials with multiple rate-independent dissipative mechanisms
Frost, Miroslav; Moskovka, Alexej; Sedlák, Petr; Valdman, Jan
2023 - English
The incremental energy minimization approach is a compact variational formulation of the evolutionary boundary value problem for constitutive models of materials with a rate-independent response. Although it can be easily applied to many conventional models, its main advantages arise when applied to models with multiple strongly coupled dissipation mechanisms, where the direct construction of the coupled yield conditions and flow rules may be challenging. However, this usually requires a more complex numerical treatment of the resulting sequence of time-incremental boundary value problems resolved via the finite element method. This contribution presents, compares and discusses two genuine minimization approaches - the staggered solution procedure relying on alternating minimization and the monolithic approach employing global minimization - for an advanced constitutive model of shape memory alloys. Keywords: variational approach; constitutive modeling; numerical implementation Fulltext is available at external website.
Numerical implementation of incremental minimization principle for materials with multiple rate-independent dissipative mechanisms

The incremental energy minimization approach is a compact variational formulation of the evolutionary boundary value problem for constitutive models of materials with a rate-independent response. ...

Frost, Miroslav; Moskovka, Alexej; Sedlák, Petr; Valdman, Jan
Ústav termomechaniky, 2023

Implementation of a plasticity model with advanced kinematic hardening rule for additively manufactured materials
Marek, René; Parma, Slavomír; Gabriel, Dušan; Džugan, J.
2023 - English
This technical report summarizes particularly the modeling part of the project DP 04_01_NPO “Emission-free technologies for local energy sources replacement” including development of models to describe multi-material 3D printed structures. The work is done in cooperation between COMTES FHT, a.s., the Institute of Thermomechanics of the Czech Academy of Sciences, v.v.i. and PROINNO, a.s. The goal of the project is the development of material models describing the behavior of multi-material components deposited by the direct deposition method (DED) under multiaxial cyclic loading.\nIn the report, a plasticity model suitable for materials prepared by the additive manufacturing method is compiled and used. The model uses Hill's plasticity condition, an advanced multi-component kinematic hardening rule, and an isotropic hardening rule. The associated flow rule is chosen and the implementation assumes the theory of small deformations. All constitutive relationships are presented and discussed for the selected model, and the model is thus fully and unambiguously formulated. The model is analytically integrated for a special case of loading and a special choice of parameters of the plasticity condition, namely transverse isotropy. A discretization scheme for numerical integration and procedures for FE implementation of the model are presented. For the FE implementation, a formulation in the displacement field is assumed, specifically the FE solver Abaqus and the implementation of the model using the UMAT interface are targeted. Several examples of the model's response to monotonic, uniaxial and biaxial cyclic loading trajectories are presented. \n Tato zpráva shrnuje postup prací na dílčím projektu DP 04_01_NPO “Emission-free technologies for local energy sources replacement” zahrnující vývoj modelů pro popis chování multi-materiálových 3D tištěných struktur řešený v konsorciu COMTES FHT, a.s., Ústav termomechaniky AV ČR, v.v.i. a PROINNO, a.s. Cílem projektu je vývoj materiálových modelů popisujících chování multi-materiálových komponent deponovaných metodou přímé depozice (DED) pří víceosém cyklickém zatěžování. \nVe zprávě je sestaven a použit model plasticity vhodný pro materiály připravené metodou aditivní výroby. Model využívá Hillovu podmínku plasticity, pokročilý vícesložkový model kinematického zpevnění a model isotropního zpevnění. Je zvolen asociovaný zákon tečení a implementace předpokládá teorii malých deformací. Pro zvolený model jsou uvedeny a diskutovány všechny konstitutivní vztahy a model je tak plně a jednoznačně formulován. Model je analyticky integrován pro speciální případ zatěžování a speciální volbu parametrů podmínky plasticity, konkrétně příčnou isotropii. Je prezentováno diskretizační schema pro numerickou integraci a procedury pro MKP implementaci modelu. U MKP implementace se předpokládá formulace v poli posunutí, konkrétně je pak cíleno na MKP řešič Abaqus a implementaci modelu pomocí rozhraní UMAT. Je prezentováno několik příkladů odezvy modelu na monotónní, jednoosé a víceosé cycklické zatěžovací trajektorie.\n Keywords: plasticity; anisotropy; additive manufacturing Available at various institutes of the ASCR
Implementation of a plasticity model with advanced kinematic hardening rule for additively manufactured materials

This technical report summarizes particularly the modeling part of the project DP 04_01_NPO “Emission-free technologies for local energy sources replacement” including development of models to ...

Marek, René; Parma, Slavomír; Gabriel, Dušan; Džugan, J.
Ústav termomechaniky, 2023

Implementation of wall functions into a hybrid fictitious domain-immersed boundary method
Kubíčková, Lucie; Isoz, Martin
2023 - English
Hybrid fictitious domain-immersed boundary method (HFDIB) is a simulation approach used in computational fluid dynamics. The approach avoids usage of complex geometry-conforming computational domains. Instead, a simple domain is used and the geometry is projected onto it by a scalar field and adjustment of governing equations. Hence, the time spent on mesh generation is substantially reduced. It is advantageous to use the HFDIB in geometry optimizations where it allows for a massive optimization speed-up. Nevertheless, there is a problem with simulation of the fluid behavior in the boundary layer in the vicinity of the immersed walls. Especially, in simulation of highly turbulent flows, where the boundary layer is very thin and the usage of finer mesh is unaffordable. In this work, we aim to solve this problem by implementation of Reynolds averaged turbulence models in our custom HFDIB variant. In particular, we implemented the k-ω turbulence model and blended wall functions for closure variables and velocity. Keywords: wall functions; immersed boundary method; CFD; RAS Fulltext is available at external website.
Implementation of wall functions into a hybrid fictitious domain-immersed boundary method

Hybrid fictitious domain-immersed boundary method (HFDIB) is a simulation approach used in computational fluid dynamics. The approach avoids usage of complex geometry-conforming computational domains. ...

Kubíčková, Lucie; Isoz, Martin
Ústav termomechaniky, 2023

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases