Number of found documents: 309
Published from to

The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine
Šulc, R.; Ditl, P.; Fořt, I.; Jašíková, D.; Kotek, M.; Kopecký, V.; Kysela, Bohuš
2017 - English
In PIV studies published in the literature focusing on the investigation of the flow field in an agitated vessel the record time is ranging from the tenths and the units of seconds. The aim of this work was to determine minimum record time for PIV measurement in a vessel agitated by a Rushton turbine that is necessary to obtain relevant results of velocity field. The velocity fields were measured in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter using 2-D Time Resolved Particle Image Velocimetry in the impeller Reynolds number range from 50 000 to 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. Three liquids of different viscosities were used as the agitated liquid. On the basis of the analysis of the radial and axial components of the mean- and fluctuation velocities measured outside the impeller region it was found that dimensionless minimum record time is independent of impeller Reynolds number and is equalled N. t(Rmin) = 103 +/- 19. Keywords: agitated vessel; Rushton turbine; PIV; averaging limits Fulltext is available at external website.
The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine

In PIV studies published in the literature focusing on the investigation of the flow field in an agitated vessel the record time is ranging from the tenths and the units of seconds. The aim of this ...

Šulc, R.; Ditl, P.; Fořt, I.; Jašíková, D.; Kotek, M.; Kopecký, V.; Kysela, Bohuš
Ústav pro hydrodynamiku, 2017

Deposition limit velocity: effect of particle size distribution
Matoušek, Václav; Visintainer, R.; Furlan, J.; McCall, G.; Sellgren, A.
2017 - English
Industrial settling slurries often consist of particles of very different sizes - the particle size distribution may cover sizes which differ with two orders of magnitude. A broad particle size distribution affects parameters of slurry flow including deposition limit velocity. We present experimental results of the deposition limit velocity collected during a comprehensive experimental campaign testing slurry flows composed of solids of different fractions in the GIW Hydraulic Laboratory in 2016. Four narrow graded fractions (carrier fluid, pseudo-homogeneous, heterogeneous, and stratified) were tested in permutations from the individual components to the complete mixture at various concentrations. The primary experiments were carried out in a 203-mm pipe, and selected corresponding experiments were repeated in a 103-mm pipe. The experimental results show that interactions among components affect the resulting deposition limit velocity in flows of broadly graded settling slurries. The effect of particle size distribution on the deposition limit velocity is not benign. The deposit velocity is not necessarily lower in a flow of slurry composed of four components than in slurry flow of one component with the highest deposit velocity from the four components. We discuss possible modifications of a deposit velocity predictive model in order to take effects of a broad particle size distribution into account. Keywords: settling slurry flow; deposit in pipe; four component model; mixture flow experiment Available at various institutes of the ASCR
Deposition limit velocity: effect of particle size distribution

Industrial settling slurries often consist of particles of very different sizes - the particle size distribution may cover sizes which differ with two orders of magnitude. A broad particle size ...

Matoušek, Václav; Visintainer, R.; Furlan, J.; McCall, G.; Sellgren, A.
Ústav pro hydrodynamiku, 2017

Concentration distribution and slip velocity of coarse-particle-water mixture in horizontal and inclined pipe sections
Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří
2017 - English
Narrow particle size distribution basalt pebbles of mean particle size 11.5 mm conveyed by water in the pipe sections of different inclination were investigated on an experimental pipe loop of inner diameter D = 100 mm. Mixture flow-behaviour and the concentration distribution were studied in a pipe viewing section and with the application of a gamma-ray densitometer. The study refers to the effect of mixture velocity, overall concentration, and angle of pipe inclination on chord-averaged concentration profiles and local concentration maps. The study revealed that the coarse particle-water mixtures in the inclined pipe sections were significantly stratified, the solid particles moved principally close to the pipe invert, and for higher and moderate flow velocities particle saltation becomes the dominant mode of particle conveying. Keywords: hydraulic conveying; concentration distribution; pipe inclination; Gamma-Ray radiometry; mixture flow behaviour Available on request at various institutes of the ASCR
Concentration distribution and slip velocity of coarse-particle-water mixture in horizontal and inclined pipe sections

Narrow particle size distribution basalt pebbles of mean particle size 11.5 mm conveyed by water in the pipe sections of different inclination were investigated on an experimental pipe loop of inner ...

Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří
Ústav pro hydrodynamiku, 2017

Flow of heterogeneous slurry in horizontal and inclined pipes
Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Kysela, Bohuš
2017 - English
Narrow particle size distribution heterogeneous slurries were investigated on an experimental pipe loop with the horizontal and inclined pipe sections of inner diameter 100 mm. The investigation was focused on the effect of the pipe inclination, average slurry velocity and overall concentration and on the local concentration distribution, pressure drop, deposition limit and carrier liquid-particle slip velocity. The local concentration distribution was studied with the application of a gamma-ray densitometer. Mixture flow-behaviour and particles motion were investigated in a pipe viewing section. The study revealed that the heterogeneous slurries in the horizontal and inclined pipe sections were significantly stratified, the solid particles moved principally close to the pipe invert, and particle saltation becomes the dominant mode of particle conveying for higher and moderate flow velocities. Carrier liquid-particle slip velocity depends not only on the mixture velocity, but also on particle position in the pipe cross-section. The effect of pipe inclination on the frictional pressure drop in inclined pipe sections depends on mixture velocity, in ascending pipe section decreases with increasing mixture velocity and in descending pipe section the frictional pressure drop gradually decreased with increasing pipe inclination. Keywords: solid-liquid mixture; pipe inclination; slip velocity; mixture flow behaviour; concentration distribution Available at various institutes of the ASCR
Flow of heterogeneous slurry in horizontal and inclined pipes

Narrow particle size distribution heterogeneous slurries were investigated on an experimental pipe loop with the horizontal and inclined pipe sections of inner diameter 100 mm. The investigation was ...

Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Kysela, Bohuš
Ústav pro hydrodynamiku, 2017

The role of sonication of polyethyleneoxide solutions containing magnetic nanoparticles on morphology of nanofibrous mats
Peer, Petra; Stěnička, M.; Filip, Petr; Pizúrová, Naděžda; Babayan, V.
2017 - English
Properties of the resulting polymer nanofibers are often tailored by sonication technique applied prior or past an electrospinning process. The aim of this contribution is to evaluate morphology of nanofibrous mats formed by poly(ethylene oxide) with distributed magnetic nanoparticles (MNP) (about 20 nm in diameter) in dependence on time of sonication of the used polymer solutions. The solutions were exposed to sonication (intensity 200W, frequency 24 kHz) for 10, 30, and 60 minutes. It was shown that rheological characteristics (viscosity, storage and loss moduli) strongly depend on time of sonication (particularly phase angle) in contrast to electric conductivity and surface tension. For analysis of homogeneous distribution of MNP in polymer solution, the rheological measurements were carried out also in presence of external magnetic field. Magnetorheological efficiency (a relation of corresponding viscosities) was determined for 80, 170, and 255 mT. Consequently, changed rheological characteristics participate significantly in the process of electrospinning and resulting quality of the obtained nanofibrous mats. Qualitative changes were described by\nmeans of scanning electron microscopy (variance of mean diameter of nanofibers), transmission electron microscopy (distribution of MNP within nanofibrous mats). Static magnetic properties were determined by a vibration sample magnetometer. It was shown that even distribution of MNP in the mats can be achieved by mere sonication process without application of external magnetic field during an electrospinning process. However, time of sonication generates a degree of embedding of MNP into individual nanofibers. Keywords: ultrasound; poly(ethylene oxide); magnetic nanoparticles; magnetorheology; electrospinning Available on request at various institutes of the ASCR
The role of sonication of polyethyleneoxide solutions containing magnetic nanoparticles on morphology of nanofibrous mats

Properties of the resulting polymer nanofibers are often tailored by sonication technique applied prior or past an electrospinning process. The aim of this contribution is to evaluate morphology of ...

Peer, Petra; Stěnička, M.; Filip, Petr; Pizúrová, Naděžda; Babayan, V.
Ústav pro hydrodynamiku, 2017

Permeation of VOC vapours through carbon nanotube network membranes controlled electrically
Slobodian, P.; Říha, Pavel; Olejník, R.
2016 - English
In this letter, we report the increase of permeation rates of some typical volatile organic compounds through entangled carbon nanotube networks by an electric current. The change in the permeation rate is reversible when the\ncurrent is turned off. The permeation rise is partly probably due to Joule effect and thus increased membrane temperature and vapor pressure in the vicinity of the inlet side of membrane. However, the effects of vapor polarity and electrostatic interaction of vapors and charged nanotubes seem to be also involved and contribute to the differentiation between alcohol and carbohydrate vapors permeation. Keywords: electroconductive polymer mebranes; vapor permeation; electrical stimulation Available on request at various institutes of the ASCR
Permeation of VOC vapours through carbon nanotube network membranes controlled electrically

In this letter, we report the increase of permeation rates of some typical volatile organic compounds through entangled carbon nanotube networks by an electric current. The change in the permeation ...

Slobodian, P.; Říha, Pavel; Olejník, R.
Ústav pro hydrodynamiku, 2016

Organic vapour sensing and thermoelectric properties of carbon nanotubes/ethylene-octene copolymer composites combined in a thermopile
Slobodian, P.; Říha, Pavel; Olejník, R.; Benlikaya, R.
2016 - English
A novel self-powered thermoelectric vapor sensor, whose thermogenerated voltage was modulated by chemical vapors is presented. The sensor was made of composites of oxidized multi-walled carbon nanotubes within\nethylene-octene copolymer. The multi-walled carbon nanotubes within ethylene-octene copolymer showed that the oxidation with KMnO4 enhanced its p-type electrical conductivity and that the thermoelectric power increase was proportional to the formation of new oxygen-containing\nfunctional groups on the surface of carbon nanotubes. When this composite was subjected to a saturated vapor of either heptane (aliphatic hydrocarbon), toluene (aromatic hydrocarbon) or ethanol (alcohol), its respective relative resistance increased in average by 3.6, 1.1 and 0.05. Keywords: thermoelectric polymers; self-powered vapor sensor; X-ray photoelectron spectroscopy Available on request at various institutes of the ASCR
Organic vapour sensing and thermoelectric properties of carbon nanotubes/ethylene-octene copolymer composites combined in a thermopile

A novel self-powered thermoelectric vapor sensor, whose thermogenerated voltage was modulated by chemical vapors is presented. The sensor was made of composites of oxidized multi-walled carbon ...

Slobodian, P.; Říha, Pavel; Olejník, R.; Benlikaya, R.
Ústav pro hydrodynamiku, 2016

Distribution of the turbulent kinetic dissipation rate in an agitated vessel
Kysela, Bohuš; Sulc, R.; Konfršt, Jiří; Chára, Zdeněk; Fořt, I.; Ditl, P.
2016 - English
The design of the agitated tanks depends on the proposed operating conditions and processes\nfor that they are used for. Namely dissipation rate of the turbulent kinetic energy is important\nparameter for the scale-up modelling. The dissipation rate is commonly determined as integral\nvalue based on power input of the impeller, but without information about distribution inside\nthe agitated volume. The cumulative distributions of the dissipation rate within an agitated\nvessel are estimated by evaluations of the CFD (Computational Fluid Dynamics) results,\nwhere the data was obtained from RANS (Reynolds Averaged Navier-Stokes equations) and\nLES (Large Eddy Simulations). The simulations were performed for an agitated vessel\nequipped with four baffles and stirred by a standard Rushton turbine (tank diameter 0.3 m,\nimpeller diameter 0.1 m, off-bottom clearance half of tank diameter, impeller speed 200 rpm).\nThe values of the dissipation rate from the LES calculations were approximated by computing\nthe SGS (Sub Grid Scale) dissipation rate. Keywords: agitated vessel; dissipation rate; kinetic energy Available on request at various institutes of the ASCR
Distribution of the turbulent kinetic dissipation rate in an agitated vessel

The design of the agitated tanks depends on the proposed operating conditions and processes\nfor that they are used for. Namely dissipation rate of the turbulent kinetic energy is important\nparameter ...

Kysela, Bohuš; Sulc, R.; Konfršt, Jiří; Chára, Zdeněk; Fořt, I.; Ditl, P.
Ústav pro hydrodynamiku, 2016

The role of sonication of PEO solutions with magnetic nanoparticles on morphology of the resulting nanofibrous mats
Peer, Petra; Stěnička, M.; Filip, Petr; Pizúrová, Naděžda; Babayan, V.
2016 - English
Properties of the resulting polymer nanofibres are often tailored by sonication technique applied prior or past an electrospinning process. The aim of this contribution is to evaluate morphology of nanofibrous mats formed by poly(ethylene oxide) with distributed magnetic nanoparticles (about 20nm in diameter) in dependence on time of sonication of the used polymer solutions. The solutions were exposed to sonication (intensity 200W, frequency 24 kHz) for 10, 30, and 60 minutes. It was shown that rheological characteristics (viscosity, storage and loss moduli) strongly depend on time of sonication (particularly phase angle) in contrast to electric conductivity and surface tension. For analysis of homogeneous distribution of magnetic field and magnetorheological efficiency (a relation of corresponding ciscosities) was process of electrospinning and resulting wuality of the obtained nanofibrous mats. Keywords: PEO solutions; Nanoparticles; Nanofiber Available at various institutes of the ASCR
The role of sonication of PEO solutions with magnetic nanoparticles on morphology of the resulting nanofibrous mats

Properties of the resulting polymer nanofibres are often tailored by sonication technique applied prior or past an electrospinning process. The aim of this contribution is to evaluate morphology of ...

Peer, Petra; Stěnička, M.; Filip, Petr; Pizúrová, Naděžda; Babayan, V.
Ústav pro hydrodynamiku, 2016

Multi-functional composites with integrated nanostructured carbon nanotubes based sensing films
Slobodian, P.; Pertegás, S.L.; Schledjewski, R.; Matyáš, J.; Olejník, R.; Říha, Pavel
2016 - English
Carbon nanotubes are exceptional nano-objects with respect to their remarkable properties, holding great potential in new polymeric materials design with unique characteristics. To illustrate it, the conventional glass reinforced epoxy composite is combined with a layer of entangled network of carbon nanotubes deposited on polyurethane non-woven membrane. The prepared nano-composite is studied for their diverse mjulti-functional applications involving extension and compression strain sensing composite, remoulding by means of resistance Joule heating and radiating as a planar micro strip antenna operating at frequencies of 2MHz up to 4GHz. Keywords: epoxy composite; glass fibers; carbon nanotubes; electro-mechanical properties Fulltext is available at external website.
Multi-functional composites with integrated nanostructured carbon nanotubes based sensing films

Carbon nanotubes are exceptional nano-objects with respect to their remarkable properties, holding great potential in new polymeric materials design with unique characteristics. To illustrate it, the ...

Slobodian, P.; Pertegás, S.L.; Schledjewski, R.; Matyáš, J.; Olejník, R.; Říha, Pavel
Ústav pro hydrodynamiku, 2016

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases